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Abstract

We describe a novel form of Newton�s method for computing 3D MHD equilibria. The method has been imple-

mented as an extension to the hybrid spectral/finite-difference Princeton Iterative Equilibrium Solver (PIES) which nor-

mally uses Picard iteration on the full nonlinear MHD equilibrium equations. Computing the Newton functional

derivative numerically is not feasible in a code of this type but we are able to do the calculation analytically in magnetic

coordinates by considering the response of the plasma�s Pfirsch–Schlüter currents to small changes in the magnetic field.

Results demonstrate a significant advantage over Picard iteration in many cases, including simple finite-b stellarator

equilibria. The method shows promise in cases that are difficult for Picard iteration, although it is sensitive to resolution

and imperfections in the magnetic coordinates, and further work is required to adapt it to the presence of magnetic

islands and stochastic regions.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Magnetohydrodynamics (MHD) is the basic single-fluid model of macroscopic plasma behavior [1,2]. It

describes the effect of magnetic geometry on a plasma�s macroscopic equilibrium and stability through the

interaction of inertial, pressure, and magnetic forces. When a plasma evolves on timescales much longer
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than the Alfvén time (typically microseconds in a fusion plasma) its behavior is governed by the MHD equi-

librium equations,
J� B ¼ rP ; ð1Þ
r � B ¼ J; ð2Þ
r � B ¼ 0; ð3Þ
where P is the scalar pressure, B is the magnetic field, and J is the current density. Eq. (1) expresses equi-

librium force balance in the plasma and Eq. (2) is Ampere�s Law (displacement current is neglected in

MHD). Toroidal MHD equilibria are important in modeling magnetic confinement devices for the nuclear
fusion program (tokamaks and stellarators) because steady state reactor conditions are desirable. The

equilibrium equations are analytically intractable for most realistic plasma configurations, so they must

generally be solved by numerical techniques. Newton�s method has been applied to simple one- and

two-dimensional systems [3,4], confirming its well-known speed advantage and the ability to find some

equilibria that raw Picard iteration cannot, but it has never been applied successfully in the general 3D case.

Our Newton equilibrium solver has been implemented in the hybrid spectral finite-difference Princeton

Iterative Equilibrium Solver (PIES) [5] which normally uses direct (Picard) iteration of the full 3D equi-

librium equations. PIES can be used to study realistic systems with magnetic islands and stochastic re-
gions because it makes no assumptions about magnetic field structure, but a lot of solution blending

between successive iterations can be required to get convergence. Newton�s method is potentially a much

faster direct algorithm, but computing the Newton functional derivative numerically is not feasible in a

code of this type, for reasons given in Section 3. By considering the response of the plasma�s pressure-

driven Pfirsch–Schlüter currents to small magnetic perturbations, however, we are able to derive the func-

tional derivative analytically in magnetic coordinates. Moreover, our version of Newton�s method can be

seen as a natural extension of the existing Picard formulation of PIES, as discussed in Section 3. We note

that the Jacobian-free Newton–Krylov methods [6] are a potentially interesting alternative to the
approach taken here.

Section 2 gives an overview of the Picard algorithm for computing 3D MHD equilibria, and its imple-

mentation in PIES. Section 3 shows how Newton�s method can be formulated to solve the same problem,

and how it relates to the Picard scheme. Section 4 gives essential details of our numerical implementation of

Newton�s method: the radial discretization and how its accuracy is affected by gauge choice for the vector

potential, derivation of near origin radial dependence for Fourier coefficients, boundary conditions, and

gross structure of the discretized system. Section 5 describes our analytic derivation of the Newton gradient

term, and Section 6 gives some results on the performance of the Newton code. Finally, Section 7 summa-
rizes and suggests further research.
2. Overview of the PIES code

The PIES code solves the MHD equilibrium equations in the form
r� B ¼ JðBÞ; ð4Þ

where J is a complicated, nonlinear function of B. Given B, the component of J perpendicular to B is deter-

mined by the force balance equation, Eq. (1). The component parallel to B, J Æ B, is determined by $ Æ J = 0.

As described below in this section, the PIES code solves Eq. (4) using Picard iteration,
r� Bi ¼ JðBi�1Þ; ð5Þ

where the subscript i denotes iteration number. The remaining sections of this paper will be concerned with
the solution of Eq. (4) using Newton�s method.
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Picard iteration is commonly used on complicated multi-dimensional systems where it may be

difficult to apply more sophisticated techniques. It was first suggested for the MHD equilibrium equa-

tions in the late 1950s by Spitzer [7] and by Grad and Rubin [8], but computing power was not

sufficient for 3D cases until the late 1980s. Numerical methods also had to be developed to solve

the magnetic differential equation (MDE) that arises when computing the current density from the force
balance equation [9–11] (see also Section 2.2). One iteration of the PIES implementation of Eq. (5) can

be described as follows: given an estimate of the magnetic field, solve the force balance equation for the

current density then, in terms of the new current density, solve Ampere�s Law for a new magnetic field

estimate,
Fig. 1.

shown
JiðBi�1Þ (
JiðBi�1Þ � Bi�1 ¼ rP ;

r � JiðBi�1Þ ¼ 0;

�
ð6Þ

Bi (
r� Bi ¼ JiðBi�1Þ;
r � Bi ¼ 0.

�
ð7Þ
In the 2D axisymmetric case this reduces to the Picard-iterative form of the Grad-Shafranov equation [2],
r�wp
iþ1 ¼ J/ðwp

i Þ ¼ R2P 0ðwp
i Þ þ gg0ðwp

i Þ; ð8Þ
where wp is a magnetic surface label proportional to the poloidal flux. PIES was the first code to demon-

strate that the full 3D algorithm converges [12].

Section 2.1 describes the representation of fields within PIES, Section 2.2 discusses the solution of Eq.

(6), and Section 2.3 discusses the solution of Eq. (7).

2.1. Representation of fields in PIES

The principal coordinate systems used in PIES are the quasi-magnetic and fixed background toroidal

systems (q, h, /), as illustrated in Fig. 1. q is the radial coordinate in the poloidal plane, varying between

0 at the center and 1 at the outer surface. The angular coordinates, h (poloidal) and / (toroidal), both vary

between 0 and 2p, but only / is a uniform polar angle. The toroidal background grid is unrelated to the

magnetic field except that the outer coordinate surface coincides with the outer magnetic surface. The
The coordinate systems used in PIES. Fixed background and quasi-magnetic toroidal coordinates are represented by (q, h, /),
in relation to laboratory (X, Y, Z) and rotating (x, y, z) Cartesian systems.
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quasi-magnetic grid is a straight field line system wherever good magnetic surfaces exist, and is interpolated

smoothly across other regions. Straight field-line coordinates are defined by the canonical equation,
B ¼ rw�rhþ iðwÞr/�rw; ð9Þ

where w(q) is the toroidal flux and i(w) is the rotational transform or winding number of the field.

Fields in PIES are represented by sets of 2D Fourier coefficients on each radial surface ql (l = 1, . . . , k).
They are assumed symmetric under the stellarator transformation (h ! �h, / ! �/) which halves the

number of modes to be retained and implies strictly odd or even parity,
f ðq; h;/Þ ¼
XM
m¼0

XN
n¼�N

fm;nðqÞ½cos j sin�ðnN/� mhÞ; ð10Þ
where m and n are the poloidal and toroidal mode numbers. The number of toroidal periods, N, is omitted

from subsequent equations. This is equivalent to considering axisymmetric devices or a single period of a

non-axisymmetric device. For other cases, N can easily be restored by replacing / with N/ and o/ with

No/. Angular resolution is set at run-time by fixing the cutoff mode numbers M and N. The redundant
m = 0, n = ±m coefficients are retained to simplify mode-number loops.

2.2. Computing the current density

An equation for the current density can be obtained from the vector product of the magnetic field and

the force balance equation,
J ¼ lBþ B�rP

B2
; ð11Þ
the divergence of which yields a magnetic differential equation for the parallel current density l,
B � rl ¼ �rP � r � B

B2

� �
. ð12Þ
Magnetic differential equations can be solved analytically by Fourier decomposing in the straight field line

coordinates of Eq. (9). Accordingly, solving for l and substituting into Eq. (11), we get
Jðw; h;/Þ ¼ I 0ðwÞ þ P 0ðwÞ
X0

m;n

mJm;n

ðn� imÞ cosðn/� mhÞ
 !

rw�rh

� g0ðwÞ � P 0ðwÞ
X0

m;n

nJm;n

ðn� imÞ cosðn/� mhÞ
 !

r/�rw; ð13Þ
where I 0(w) and g 0(w) are the toroidal and poloidal current profiles, P 0(w) is the pressure profile, and the

primes indicate omission of m = n = 0 coefficients from sums. The computational effort in solving for

the current density is thus largely expended on sophisticated numerical field-line mapping techniques, at

the start of each iteration, for constructing the coordinate systems and Fourier decompositions in order

to simply evaluate the analytic expression for J (in fact Eq. (11) is used to compute J on the background

grid, having solved the MDE for l in magnetic coordinates; see the second to last paragraph of Section 6.4).

The field line mapping routines evaluate the Cartesian coordinates (x, y) along lines of magnetic force to
construct the Fourier representation of the magnetic to Cartesian transformation (i.e. the Jacobian and

metric elements) and the code reconstructs the 2D spectra of various fields, on each radial surface, from

1D spectra obtained by evaluation along the field lines [9,13].
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2.3. Solving Ampere�s Law for the magnetic field

Once the current density is known, Ampere�s Law can be solved as a linear equation for the new mag-

netic field. This is done in PIES by reducing Eq. (7) to a Poisson equation for a scalar field whose gradient

can be related to B [12]. The system is discretized by 2D Fourier decomposition and finite-differencing on
offset radial grids, and the leading-order near origin radial dependence is factored from Fourier coefficients

to improve accuracy (Section 4.1). The resulting sparse linear system is solved by block tridiagonal LU

decomposition. The Ampere�s Law solver, in contrast to unlike the current density solver, does not have

to run in magnetic coordinates, and PIES performs markedly better when Ampere�s Law is solved on

the background grid (this is of relevance to the Newton algorithm too; see Section 6.3).
3. Newton�s method for MHD equilibria

We derive Newton�s method for 3D MHD equilibria in this section, and describe its implementation

within PIES in Section 4.

Newton�s method is a well-known multi-dimensional root-finding technique that is quadratically conver-

gent given a sufficiently good initial guess. The familiar iterative algorithm can be derived by Taylor expan-

sion of the nonlinear equation f(x) = 0 in the vicinity of an initial guess, xi�1. Discarding second-order and

higher terms leaves a linear equation for xi, the next iterative approximation to the solution vector,
rfðxi�1Þ � ðxi � xi�1Þ ¼ �fðxi�1Þ. ð14Þ
Likewise, Newton�s method solution of Eq. (4) proceeds by writing
Bi ¼ Bi�1 þ dBi ð15Þ
and Taylor expanding Eq. (4) to first order:
r� ðBi�1Þ þ r � ðdBiÞ ¼ JðBi�1Þ þ ðdJ=dBÞjBi�1
� dBi. ð16Þ
In the expression ðdJ=dBÞjBi�1
� dBi, dBi is to be regarded as a vector whose components consist of all the

Fourier components of B on every radial grid surface, and ðdJ=dBÞjBi�1
is a matrix operating on all of those

components. For a given Bi�1, Eq. (16) is a linear equation for dBi. The functional derivative dJ/dB is the

derivative of each of the Fourier components of J(B) on each flux surface with respect to each of the com-

ponents of B. Evaluating it numerically would not be feasible in PIES because the computationally inten-

sive 3D field-line mapping code would have to be invoked many times in each iteration to determine the

effect of independently varying every Fourier coefficient of the magnetic field. We are able to avoid this

by deriving the functional derivative (gradient term) analytically in magnetic coordinates, by considering

the response of the plasma�s Pfirsch–Schlüter currents to small magnetic field perturbations, in Section 5.

Jacobian-free Newton–Krylov methods are a potentially interesting alternative, as noted in the introduc-
tion, but our approach fits very well within the existing design of PIES.

At each step of the Newton scheme, Eqs. (6) and (7) are replaced by
JiðBi�1Þ (
JiðBi�1Þ � Bi�1 ¼ rP ;

r � JiðBi�1Þ ¼ 0;

�
ð17Þ

Bi (
r� dBi � dJi ¼ JiðBi�1Þ � r � Bi�1;

r � dBi ¼ 0;

�
ð18Þ
where Bi = Bi�1 + dBi, and dJ is the Newton gradient term,
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dJi �
oJðBÞ
oB

����
Bi�1

� dBi ¼ Jiþ1ðBiÞ � JiðBi�1Þ þ OðdB2
i Þ. ð19Þ
Note that Eq. (18) looks like its Picard counterpart with one new term added, which raises the possibility of

converting PIES to Newton�s method with relative ease. The reduction of Ampere�s Law to a scalar Poisson

equation no longer works in the presence of the extra term though, so we first constructed a new Newton-

compatible vector potential Picard Ampere�s Law solver,
Bi ¼ r� Ai ( r�r� Ai ¼ JiðBi�1Þ. ð20Þ
The corresponding form for Newton�s method is
Bi ¼ Bi�1 þr� dAi ( r�r� dAi �Li � dAi ¼ JiðBi�1Þ � r � Bi�1; ð21Þ
where Li � dAi is the Newton gradient term expressed as a linear operator L acting on the new solution

vector, dAi. Through Eq. (20) much of the Newton code can be verified in the context of a simpler algo-

rithm, by comparing the performance of PIES in its original and vector potential Picard modes. In partic-

ular, the curl curl operator is common to Picard and Newton, and the entire system can be discretized in
such a way that the gross structure of the resulting sparse linear system is not changed by addition of

the Newton gradient term.
4. Implementation of Newton�s method in PIES

The Newton scheme requires the numerical solution of Eq. (21) for the vector potential. First the new

vector potential Ampere�s Law solver was discretized in a similar way to the original one (Section 2.3): Fou-
rier decomposition, with the leading-order near origin radial dependence factored out of Fourier coeffi-

cients to enhance the accuracy of finite-differencing on the offset radial grids. As discussed in this

section, the particular considerations that arise in dealing with the near origin radial dependence of the vec-

tor potential led us to develop a custom block tridiagonal matrix solver.

Section 4.1 discusses our choice of gauge for the vector potential, and its corresponding near origin

behavior. Section 4.2 discusses the discretization of the equations: the finite-differencing scheme, the han-

dling of convolutions, the structure of the resultant sparse linear system, and the custom matrix solver. The

derivation of the Newton gradient term is described separately in Section 5.

4.1. Gauge choice and radial dependence of the vector potential

The gradient of any scalar field can be added to a vector potential without changing the magnetic field.

We use this gauge freedom to set Aq = 0, reducing the number of equations, prior to discretization, from

three to two. The remaining gauge freedom is
Aðq; h;/Þ ! Aðq; h;/Þ þ rvðh;/Þ; ð22Þ

where v is an arbitrary function of h and /. The angular covariant components of this expression, in the

representation of Eq. (10), are
Ah;m;nðqÞ ! Ah;m;nðqÞ � mvm;n; ð23Þ
A/;m;nðqÞ ! A/;m;nðqÞ þ nvm;n. ð24Þ
Other gauge conditions in addition to Aq = 0 are needed to fix the values of the (m + 1)(2n + 1) � 1 arbi-

trary gauge constants, vm,n. The choice of these constants is critical to our use of radial factors for the vector
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potential, as we shall see below, and also determines whether the Newton gradient term is flux-surface local

or not.

The finite nature of physical fields and the properties of polar-like coordinate systems dictate that the

Fourier coefficients of physical scalar fields, physical vector field components, and coordinate-related fields

such as the Jacobian have predictable analytic radial dependence near the polar-like origin,
F m;nðqÞ � qmþf as q ! 0; ð25Þ

where m is the poloidal mode number and f is some small integer. Numerical radial derivatives of high-m
modes, which vary rapidly near the origin, are better approximated by finite-difference expressions if their

leading-order behavior is factored out. This improved the performance of the PIES Ampere�s Law solver,

so we derive analogous expressions for the vector potential here.

To derive the leading-order radial dependence of a physical scalar field f(q, h), consider a Cartesian-like

coordinate system (n, g),
n ¼ q cosðhÞ; ð26Þ
g ¼ q sinðhÞ. ð27Þ
If f(q, h) is expanded in a Cartesian-like power series about the origin, n = g = 0, each series coefficient must

be finite because the Cartesian-like grid is non-singular, and the field itself is finite. By substitution of Eqs.

(26) and (27) and application of standard trigonometric identities, the power series can be put in the form of

a Fourier series in the polar-like system, and comparison with the standard representation of Eq. (10) yields

a near origin radial power series for each Fourier coefficient:
fmðqÞ ¼ qm f ð0Þ
m þ q2f ð2Þ

m þ q4f ð4Þ
m þ � � �

� �
as q ! 0; ð28Þ
where the f ðiÞ
m are just constant coefficients of qi. The leading-order radial dependence of the Fourier coef-

ficients of a physical scalar field is therefore qm.
For the polar components of vector fields and other quantities that depend directly on the coordinates,

such as the Jacobian and metric elements, the effect of the coordinate basis vectors must also be considered,
rq ¼ rn cosðhÞ þ rg sinðhÞ; ð29Þ
qrh ¼ rg cosðhÞ � rn sinðhÞ. ð30Þ
Noting that the Cartesian-like components of a physical vector field must be analytic, and proceeding as for

the scalar field derivation, one can show that the near origin leading-order radial dependence of the Jaco-

bian is qm+1, the metric elements behave as shown in Table 1, and the co- and contravariant components of

a physical vector field behave as shown in Table 2. As another consequence, there are some relations
between the lower-order power series coefficients of polar vector components near the origin. In the con-

travariant case, for example,
V q;ð0Þ
0;n ¼þ V h;ð0Þ

0;n ; ð31Þ
V q;ð0Þ

1;n ¼� V h;ð0Þ
1;n ; ð32Þ

..

.

V q;ð0Þ
m;n ¼� V h;ð0Þ

m;n ; ð33Þ
where the superscript i indicates a coefficient of qi.
The vector potential, which is not a physical field, does not have to be analytic. A general three-compo-

nent analytic vector potential, A1, does give rise to an analytic magnetic field, but the final near origin radial

behavior depends on our subsequent gauge transformation,



Table 2

Radial behavior, qe(m), for components of a physical vector field

Field e(0) e(m > 1)

V q
m;n 1 m � 1

V h
m;n 0 m � 2

V /
m;n 0 m

Vq;m,n 1 m � 1

Vh;m,n 2 m

V/;m,n 0 m

Table 1

Near origin leading-order radial exponents, qe(m), for metric elements

Field Parity e(0) e(1) e(m > 1)

ðJgqqÞm;n Even 1 2 m � 1

ðJgqhÞm;n Odd 2 1 m � 2

ðJgq/Þm;n Odd 2 1 m

ðJghhÞm;n Even �1 0 m � 3

ðJgh/Þm;n Even 1 0 m � 1

ðJg//Þm;n Even 1 2 m + 1

ðJ�1gqqÞm;n Even �1 0 m � 3

ðJ�1gqhÞm;n Odd 2 1 m � 2

ðJ�1gq/Þm;n Odd 0 �1 m � 2

ðJ�1ghhÞm;n Even 1 2 m � 1

ðJ�1gh/Þm;n Even 1 0 m � 1

ðJ�1g//Þm;n Even �1 0 m � 1
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A1 ! A2 ¼ A1 þrf such that A2q ¼ 0. ð34Þ

First write out the analytic covariant components of A1 according to Table 2,
A1q;m;nðqÞ ¼
q1 rð0Þ0;n þ rð2Þ0;nq

2 þ � � �
� �

; m ¼ 0;

qm�1 r0m;n þ rð2Þm;nq
2 þ � � �

� �
; m P 1;

8><
>: ð35Þ

A1h;m;nðqÞ ¼
q2 tð0Þ0;n þ tð2Þ0;nq

2 þ � � �
� �

; m ¼ 0;

qm tð0Þm;n þ tð2Þm;nq
2 þ � � �

� �
; m P 1;

8><
>: ð36Þ

A1/;m;nðqÞ ¼
q0 pð0Þ0;n þ pð2Þ0;nq

2 þ � � �
� �

; m ¼ 0;

qm pð0Þm;n þ pð2Þm;nq
2 þ � � �

� �
; m P 1;

8><
>: ð37Þ
where rðiÞm;n, t
ðiÞ
m;n, and pðiÞm;n are constant power series coefficients. The gauge function f(q, h, /) is then deter-

mined by the integral of the covariant radial component of Eq. (34),
fm;nðqÞ ¼
f0;nð0Þ � q2

rð0Þ
0;n

2
þ rð2Þ

0;n

4
q2 þ � � �

� �
; m ¼ 0;

fm;nð0Þ � qm rð0Þm;n

m þ rð2Þm;n

mþ2
q2 þ � � �

� �
; m P 1.

8>>><
>>>:

ð38Þ
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Substituting this back into the gauge equation, using the near origin component relations of Eqs. (31) to

(33) eliminate rð0Þm;n and annihilate the lowest-order term of the h-component power series, and aggregating

series coefficients, we get the components of A2,
A2q;m;nðqÞ ¼ 0; ð39Þ

A2h;m;nðqÞ ¼
q2 að0Þ0;n þ að2Þ0;nq

2 þ � � �
� �

; m ¼ 0;

�mvm;n þ qmþ2 að0Þm;n þ að2Þm;nq
2 þ � � �

� �
; m P 1;

8><
>: ð40Þ

A2/;m;nðqÞ ¼
nv0;n þ b0

0;n þ bð2Þ
0;nq

2 þ � � � ; m ¼ 0;

nvm;n þ qm bð0Þ
m;n þ bð2Þ

m;nq
2 þ � � �

� �
; m P 1;

8<
: ð41Þ
where the aðiÞm;n and bðiÞ
m;n are constant series coefficients and the vm,n are the Fourier coefficients of the gauge

function f evaluated at the origin. This is clearly non-analytic behavior, and the only way to extract useful

radial factors for A is to choose the exact gauge in which all the vm,n are identically zero. This must be done

by forcing the appropriate modes of Am,n to zero at the origin because the radial dependence predictions are

only valid as q ! 0,
Ah;m;nð0Þ ¼ 0 ) vm;n ¼ 0; m 6¼ 0; ð42Þ
A/;0;nð0Þ ¼ 0 ) nv0;n þ bð0Þ

0;n ¼ 0; m ¼ 0; n 6¼ 0; ð43Þ
A/;0,0(1), the flux through the hole in the center of the torus, is physically irrelevant; we can fix its value

arbitrarily by setting A/;0,0(0) to zero,
A/;0;0ð0Þ ¼ 0; ) bð0Þ
0;0 ¼ 0; m ¼ n ¼ 0 ð44Þ
for a total of (m + 1)(2n + 1) origin conditions. Given our final gauge choice, the near origin leading-order

radial dependence of the vector potential is therefore
Ah;m;nðqÞ � qmþ2 8m; ð45Þ

A/;m;nðqÞ �
q2; m ¼ 0;

qm; m P 1.

�
ð46Þ
In practice, factoring large powers of q from A can cause the $ · $ · Amatrix to become ill-conditioned, so
the radial factors are truncated to some maximum value in the code (q2 was found to be a good

compromise).

4.2. Discretization of Ampere�s Law

PIES calculates the contravariant components of the current density. The divergence-free nature of J

implies a relation between the components of the right side vector, and our gauge choice eliminates the

q-component of the solution vector. Consequently we solve the two contravariant angular components
of Ampere�s Law for the covariant angular components of A,
ðr �r� AÞh ¼ J h

ðr �r� AÞ/ ¼ J/

)
) Ah; A/. ð47Þ
The discretization is performed on two offset radial grids: the contravariant components of Ampere�s Law
and the covariant components of A reside on the integer grid,
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q ¼ lD; l ¼ 0; 1; . . . ; k; ð48Þ

and the covariant components of $ · A reside on an intermediate half-integer grid,
q ¼ lþ 1

2

� �
D; l ¼ 0; 1; . . . ; k. ð49Þ
This effectively doubles the radial resolution, increasing the accuracy of the radial discretization, and leads

to finite-difference expressions of the following form:
of
oq

� �l

m;n

¼ R0l
f ;m

~f
l�1

2

m;n þ ~f
lþ1

2m;n

2

0
@

1
Aþ Rl

f ;m

~f
lþ1

2

m;n � ~f
l�1

2

m;n

D

0
@

1
A; ð50Þ

og
oq

� �lþ1
2

m;n

¼ R
0lþ1

2
g;m

~glm;n þ ~glþ1
m;n

2

 !
þ R

lþ1
2

g;m
~glþ1
m;n � ~glm;n

D

 !
; ð51Þ
where Rl
f ;m ¼ qeðmÞ

l is the radial factor for fm,n(q) evaluated at radial surface l, from the calculations of Sec-

tion 4.1.

4.2.1. Truncated analytic convolutions

In products of the solution vector with other quantities, such as metric elements, the Fourier-space con-

volution contains sums over non-standard index ranges and trigonometric sum and difference terms with
indices outside the standard series truncation limits. It can be shown, however, that the coefficients of

the solution vector can be extracted from these convolutions in a form consistent with the standard Fourier

representation if the coefficients of the multiplying series are redefined in a particular way [14]. Consider the

convolution of two Fourier series f and u,
fu ¼
XM
m1¼0

XN
n1¼�N

ðfuÞm1;n1
ðsin j cosÞ½n1/� m1h�. ð52Þ
The coefficients of the product series can be written,
ðfuÞm1;n1
¼
XM
m2¼0

XN
n2¼�N

f m1�m2;
n1�n2

þ f m1þm2;
n1þn2

� �
um2;n2 ðEE or OEÞ;

f m1�m2;
n1�n2

� f m1þm2;
n1þn2

� �
um2;n2 ðEO or OOÞ;

8>>><
>>>:

ð53Þ
where the labels on the right refer to the parity of f and u, (E)ven or (O)dd, and the coefficients of f have

been embedded within a new set, f m;n:
f 0;n ¼
1
2
f0;n; m1 ¼ 0;

f0;n; m1 6¼ 0;

�
ð54Þ

f m;n ¼
1
4
fm;n; m1 ¼ 0;

1
2
fm;n; m1 6¼ 0;

(
ð55Þ

f m;n ¼ 0; kmk > M or knk > N ; ð56Þ
where m1 is the poloidal index from Eq. (53), and f �s index range extends to negative m such that
f �m;�n ¼
f m;n ðEE or OEÞ;
�f m;n ðEO or OOÞ.

(
ð57Þ



× × θ φ

Fig. 2. Block structure of the sparse linear system resulting from the discretization of Ampere�s Law in our chosen gauge. The size of

each dense square block is 22(m + 1)2(2n + 1)2.
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4.2.2. Structure of the sparse linear system

Our Ampere�s Law discretization results in (m + 1)(2n + 1) equations at each internal radial surface, or

(k � 1)(m + 1)(2n + 1) in total, where l = k is the radial index of the outer surface. The boundary condition
B � rqjq¼1 ¼ 0 ð58Þ
constrains the outer boundary to be a magnetic flux surface. Discretized, this gives rise to

(m + 1)(2n + 1) � 1 equations at l = k. For the m = n = 0 mode, conservation of net external poloidal cur-
rent gives one more equation,
½ðr � AÞ/�
k
0;0 ¼ Bk

/;0;0; ð59Þ
where Bk
/;0;0 is one of the code�s input parameters. The gauge conditions provide another (m + 1)(2n + 1)

equations at the origin. The radial dependence relations allow us to force Ah;m,n = 0 and A/;m,n = 0 wherever

the gauge conditions do not already specify that, and we use regularity conditions to impose the correct near

origin radial dependence for the remaining modes, yielding a further 2(m + 1)(2n + 1) origin conditions. In

total, the discretization of Ampere�s Law, with boundary, gauge, and origin regularity conditions, results in

2(k + 1)(m + 1)(2n + 1) equations for the same number of unknowns (Al
h;m;n and Al

/;m;n; l ¼ 0; . . . ; k). How-

ever, there are three times as many equations at the origin as at the outer boundary, a consequence of the

gauge conditions that make our radial factoring possible, so the resulting sparse linear system is structured

as in Fig. 2. This cannot be transformed into standard block tridiagonal form; we therefore built a custom
sparse matrix solver for the system obtained by moving the origin gauge equations to the lower block row

(i.e. a block tridiagonal system with an extra block in the lower left corner). The custom solver uses block

LU decomposition, processing one block row at a time. The extra corner block results in a dense final row in

the lower triangular factor, but the solver�s performance is still of order N block operations, where N is the

number of block-rows in the matrix.
5. Analytic derivation of the Newton gradient

It would not be feasible to numerically evaluate the large number of terms in the functional derivative of

Eq. (19), ðdJ=dBÞjBi�1
, as explained in 3. Our way around this problem, an analytic derivation of the term in

magnetic coordinates, is outlined in this section.
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The Newton gradient calculation depends intimately on the magnetic coordinates, which are related to

the magnetic field computed at the end of the previous iteration. In light of this, and of the complex algebra

involved, it is convenient to simplify our subscripting by focusing on a particular iteration and labeling

quantities according to the magnetic field with which they are associated, rather than by iteration number.

Thus the iteration of interest begins with the old (current, or known) field B0 which defines the old magnetic
coordinates (q0, h0, /0), and in terms of which the old current density J0 is computed. Then at the end of the

same iteration the new field, B1 = B0 + dB, will be computed by the Ampere�s Law solver before being used

to define the new magnetic coordinates (q1, h1, /1) in the next iteration. In this notation the Newton

gradient is written,
dJð¼ dJ0Þ ¼ J1ðB1Þ � J0ðB0Þ. ð60Þ

On entering the Ampere�s Law solver the second term on the right is a known quantity. We therefore need
to estimate, to first order in dB, the current density solution to the force balance equation for the unknown

field B1. This section of the paper demonstrates two different ways to derive an analytic expression for dJ.

5.1. Functions in the two magnetic coordinate systems

A potentially confusing aspect of this derivation is that we must work simultaneously with functions,

generally representing physical quantities with well-known symbolic labels (e.g. J for current density), in

both the old and new magnetic coordinate systems. These are generally known functions of their native
magnetic coordinates so that, for example, J0 is the same function of (w0, h0, /0) that J1 is of

(w1, h1, /1), as defined by Eq. (13). When working with the old and new versions of a particular quantity

in a single coordinate system, however, it must be kept in mind that the two functional forms are different.

The new/old subscripting (1/0) therefore also serves as an indicator of functional form: J1(w0, h0, /0) is not

the same function as J0(w0, h0, /0), just as f(x) and g(x) generally represent different functions. The new

coordinates themselves can of course be written as functions of the old,
w1ðw0; h0;/Þ ¼ w0 þ dwðw0; h0;/Þ; ð61Þ
h1ðw0; h0;/Þ ¼ h0 þ dhðw0; h0;/Þ; ð62Þ
/1ðw0; h0;/Þ ¼ /0; ð63Þ
where dw and dh are calculated in Sections 5.2.5 and 5.2.6.

5.2. Derivation of dJ, Method 1

The first method derives the gradient term entirely in terms of the old magnetic coordinates, by mak-

ing use of the canonical magnetic field and analytic current density expressions, Eqs. (9) and (13). Both

J1 and B1 are written in their native magnetic coordinates and, assuming that the small change in B also

results in a small change in the coordinates, Eqs. (61)–(63), we make a first-order series expansion about

the old coordinates. The current density equation then yields a relation between dJ and the change in the

coordinates, while the canonical equation yields a relation between the change in the coordinates and the
components of dB, with everything expressed in terms of the old coordinates. The Newton gradient is

then given by
dJðw0; h0;/0Þ ¼ J1ðw0; h0;/0Þ � J0ðw0; h0;/0Þ. ð64Þ

It is convenient to work with an alternative form of the expression for J here,
Jðw; h;/Þ ¼ I 0ðwÞ � om
oh

� �
rw�rhþ �g0ðwÞ þ om

o/

� �
r/�rw; ð65Þ
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where m is the periodic part of a stream function for the current density and satisfies the following magnetic

differential equation, which is actually an intermediate step in the derivation of Eq. (13),
JðB � rÞm ¼ J
dP
dw

þ dg
dw

þ i
dI
dw

. ð66Þ
The sections below outline essential parts of the derivation, while necessarily omitting a lot of algebraic

detail.

5.2.1. The radial component of dJ
The radial component of the Newton Ampere�s Law is linearly dependent with the other two vector com-

ponents so it is not used in the numerical algorithm, but dJw is needed as part of a right side term equivalent

to the curl of the previous iteration�s magnetic field. Expanding J1 Æ $w1 = 0 about the old quantities, dis-

carding second-order terms, and multiplying by the Jacobian gives
J0 dJ
w ¼ �J0J

h
0

odw
oh0

�J0J
/
0

odw
o/0

; ð67Þ
where dw is calculated in terms of dB in Section 5.2.5.

5.2.2. The poloidal component of dJ
Expanding the contravariant poloidal component of Eq. (65) for J1 about the unperturbed quantities,

discarding second-order terms, and making use of the zero-order equation yields
J0 dJ
h ¼ odm

o/0

� dG� J h
0 dJ�J0J0 � rdh; ð68Þ
where dG is shorthand for the change in the poloidal current profile,
dG � dðg0Þ ¼ d
dg
dw

� �
¼ dg1

dw1

� dg0
dw0

. ð69Þ
The first term on the right is a function of w1 alone in the new system, but is a function of all the old coor-

dinates (and the opposite applies for the second term). The change in the stream function is calculated in

Section 5.2.10, the change in the poloidal current profile in Section 5.2.11, the change in the Jacobian in

Section 5.2.4, and the change in the poloidal coordinate, in terms of dB, in Section 5.2.6.
5.2.3. The toroidal component of dJ
Expanding the contravariant toroidal component of Eq. (65) for J1 about the unperturbed quantities,

discarding second-order terms, and making use of the zero-order equation yields
J0 dJ
/ ¼ dI� dN� J/

0 dJ; ð70Þ

where dI is shorthand for the change in the toroidal current profile, and dN is the change in the h-deriv-
ative of the current density stream function,
dN � d
om
oh

� �
¼ om1

oh1
� om0
oh0

; ð71Þ

dI � d I 0ð Þ ¼ dI1
dw1

� dI0
dw0

. ð72Þ
These are derived Sections 5.2.8 and 5.2.12, and the change in the Jacobian in terms of dB in Section 5.2.4.
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5.2.4. The change in the Jacobian

Eqs. (68) and (70) require an expression for the perturbed Jacobian. According to the canonical

equation the Jacobian is just the inverse of B Æ $/. Doing the usual expansion, and recalling that /
is fixed, we get
dJ ¼ �J2
0 dB

/ ð73Þ

and for the inverse Jacobian,
dðJ�1Þ ¼ dB/. ð74Þ

A second expression for dJ can be derived from its definition,
J�1 ¼ rw � ðrh�r/Þ. ð75Þ

Expanding this to first order and subtracting the zero-order equation,
dJ ¼ J0

odw
ow0

þ odh
oh0

� �
. ð76Þ
5.2.5. The change in the radial coordinate

The radial component of the new canonical equation (B1 Æ $w1 = 0) expanded about the old coordinates

gives the change in the radial coordinate,
dwm;n ¼
½JdBw�m;n
ðn� imÞ . ð77Þ
The m = n = 0 Fourier coefficient, dw0,0, can be derived by equating the two forms of dJ, Eqs. (73) and (76)

and integrating over each of the coordinates,
dw0;0ðw0Þ ¼ dw0;0ð0Þ þ
Z w0

0

J0 dB
/

	 

0;0
dw0. ð78Þ
Note that w is the toroidal magnetic flux, so it is physically reasonable that dw0,0 at some radial surface

depends on dB0,0 everywhere inside the surface. This non-flux-surface-local behavior would present a prob-

lem if we formulated Ampere�s Law in terms of dB (it would generate a dense linear system on discretiza-

tion), but it is flux-surface local when expressed in terms of our vector potential in the Aq = 0 gauge. The

integrand is
J0 dB
/

	 

0;0

¼ odu
ow0

� �
0;0

ð79Þ
and the gauge conditions are also such that du0,0 = 0 at the old magnetic axis (w0 = 0), so Eq. (78) becomes
dw0;0ðw0Þ ¼ dw0;0ð0Þ þ du0;0ðw0Þ. ð80Þ
The constant dw0,0(0) exists because an arbitrary constant can be added to the radial coordinate without

changing the field. We implicitly fix w1 and w0 to zero at their respective magnetic axes, however, by our

use of the prescribed profiles I 0(w) and P 0(w). Taking the m = n = 0 coefficient of Eq. (61) and evaluating

it at the old origin shows that dw0,0 is equal to the average value of the new radial coordinate at the old

magnetic axis,
dw0;0 ¼ ½w1�0;0ð0Þ. ð81Þ
The near axis leading-order radial dependence of dw can be deduced from that of dA or dB (see Section 4),
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dwm;nðqÞ �
q2; m ¼ 0;

qm; m > 0;

�
ð82Þ
which shows that dw0,0 goes to zero at the origin, and the axis shift is a second-order quantity that can be

neglected,
dw0;0ðw0Þ ¼ du0;0ðw0Þ. ð83Þ
5.2.6. The change in the poloidal coordinate

The change in the poloidal coordinate is derived directly from the poloidal component of the canonical

equation,
dhm;n ¼
dim;n þ i½JdB/�m;n � ½JdBh�m;n

ðn� imÞ ; ð84Þ
where the change in the rotational transform, di, is calculated in Section 5.2.7. dh has odd parity and thus

no m = n = 0 mode.

5.2.7. The change in the rotational transform

di can be derived by considering the integral definition of the new rotational transform in the new

coordinates,
i1ðw1Þ ¼
Z 2p

0

dh1

Z 2p

0

d/1 J1B1 � rh1. ð85Þ
After converting this to a volume integral, by integrating over a radial Dirac delta function, we can trans-

form to the old coordinates, expand everything about the unperturbed values, and do the integration. After

much algebra we obtain
i1ðw1Þjw1¼w� ¼ ½JdBh�0;0ðw
�Þ � i0ðw�Þ½JdB/�0;0ðw

�Þ þ i0ðw�Þ � i00ðw
�Þdw0;0ðw�Þ; ð86Þ
where the right side is a function of w0 evaluated at w0 = w*, and the left side is a function of w1 evaluated at

w1 = w*. Careful consideration of how these functions relate to each other gives the final result,
diðw0; h0;/0Þ ¼ ½JdBh�0;0ðw0Þ � i0ðw0Þ½JdB/�0;0ðw0Þ þ i00ðw0Þfdwðw0; h0;/0Þ � dw0;0ðw0Þg. ð87Þ
On Fourier decomposition a cancellation occurs in the last term, so that the m = n = 0 mode has to be trea-

ted as a special case:
di0;0 ¼ ½J0 dB
h�0;0 � ½i0J0 dB

/�0;0; ð88Þ
dim;n ¼ i00 dwm;n; ðm; nÞ 6¼ ð0; 0Þ. ð89Þ
dw0,0 cancels out of the equation as it should (only quantities that are directly related to the two prescribed
profiles can depend upon the absolute value of the radial coordinate, and hence on dw0,0). Eq. (88) is con-

sistent with the m = n = 0 mode of Eq. (84), from the dh calculation.

5.2.8. The change in the prescribed profiles,P 0 and I 0

The equilibrium free profile functions used in the code are the pressure and toroidal current profiles,

P 0(w) and I 0(w). Newton�s method needs the new profiles P 0
1ðw1Þ and I 01ðw1Þ in terms of the old ones,

P 0
0ðw0Þ and I 00ðw0Þ. This is quite simple so long as the profiles are specified in terms of the radial flux coor-

dinate w and not the uniform radial coordinate q. They are actually specified in terms of q in the PIES
Picard algorithm but this generates non-flux-surface-local terms in the Newton method, because the
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normalization of q implies knowledge of the edge-value at the next iteration. In contrast to all the other

quantities we have considered, the functional form of these profiles is the same in both the old and the

new coordinate systems; the difference between the perturbed and unperturbed profiles is due solely to

the change in the coordinates,
dP � dðP 0Þ ¼ P 00
0 dw; ð90Þ

dI � dðI 0Þ ¼ I 000 dw. ð91Þ
5.2.9. The change in J0;0

The derivation of the change in the stream function, in Section 5.2.10, requires the m = n = 0 mode of the

Jacobian in, and with respect to, both the old and the new coordinates. These are related by
½J1�
ð1Þ
0;0 ¼ ½J0�

ð0Þ
0;0 þ dn; ð92Þ
where dn is shorthand for dðJ0;0Þ, which is not the same as the m = n = 0 mode of the change in the

Jacobian, dJ0;0 � ðdJÞ0;0. The parenthetic superscripts indicate whether the Fourier mode numbers
refer to the new or old coordinate systems. In the absence of any such superscript, the ‘‘0’’ case is

implied, which is the usual situation. The left side of Eq. (92) can be written in terms of the old

Jacobian,
½J1�
ð1Þ
0;0 ¼ ½J0�

ð1Þ
0;0 þ ½dJ�ð1Þ0;0. ð93Þ
To first order, the second term on the right here is just dJð0Þ
0;0, which we have already calculated. We need the

first term on the right, as a function of the old coordinates. Its integral definition is
½J0�
ð1Þ
0;0 ¼

Z Z 2p

0

J0dh1 d/1. ð94Þ
The method here is similar to that used for di: integrate over all three coordinates using a radial Dirac delta

function, then change integration variables and evaluate the integral in the old coordinates. After some

algebra we get
J1½ �ð1Þ0;0ðw0; h0; q0Þ ¼ J0½ �0;0ðw0Þ �
oJ0

ow0

dw

� �
0;0

ðw0Þ þ J0

odh
oh0

� �
0;0

ðw0Þ � J2
0dB

/
	 


0;0
ðw0Þ

þ oJ0

ow0

� �
0;0

ðw0Þdwðw0; h0; q0Þ; ð95Þ
where the left side is a Fourier coefficient with respect to the new coordinates expressed as a function of the

old coordinates. The same result can also be derived by considering the volume within a flux surface of B1

at w1 = w*:
V ðw�Þ ¼
Z Z 2p

0

Z w�

0

J1ðw1; h1;/1Þdw1 dh1 d/1. ð96Þ
The radial derivative of this is exactly what we need,
dV
dw1

ðw�Þ ¼
Z Z 2p

0

J1ðw�; h1;/1Þdw1 dh1 ¼ J1½ �ð1Þ0;0ðw
�Þ. ð97Þ
Rather than change integration variables to the old system, in this case we note that the same volume must

result from the following integral in the old coordinates:
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V ðw�Þ ¼
Z Z 2p

0

Z �w0ðw�;h0;/0Þ

0

J0ðw0; h0; q0Þdw0 dh0 d/0. ð98Þ
The radial integration limit now depends on the angular coordinates because we are integrating out to a

constant w1 surface, not to a constant w0 surface. The limit �w0 is therefore the value of w0 on that w1 sur-
face. Now we proceed to take the radial derivative using the technique of differentiating an integral with

respect to a parameter. Working through the calculation eventually yields the same result as Eq. (95), from

which dn can be extracted,
dnm;n ¼
oJ0

ow0

� �
0;0

dwm;n; ð99Þ

dn0;0 ¼ J0
0;0 dw0;0 � ½J0

0 dw�0;0 � ½J0 dw
0�0;0. ð100Þ
dw, and thereby dB, can be brought out of the convolution terms on the right by the methods of Section

4.2.1. The first term, proportional to dw0,0, cancels with a term in one of the convolution sums (dn is just the
change in a specific Fourier coefficient of the Jacobian; it should not depend directly on either of the pre-
scribed profiles, and consequently it should not depend on dw0,0). The final expression is rather large, but

the rest is just algebra.

5.2.10. The change in the stream function

The defining equation for the periodic part of the current density stream function is an MDE, Eq. (66).

Its m = n = 0 mode is identically zero, which gives a relation between the three profile quantities on the right

side. Substituting that information back into the original equation gives
JðB � rÞm ¼ P 0ðJ�J0;0Þ. ð101Þ
Writing this in the new system, doing the usual first-order expansion, and Fourier decomposing in the old

coordinates gives
ðn� imÞdmm;n ¼ P 0
0 dnm;n þ ½dPðJ�J0;0Þ�m;n � ½JdB � rm0�m;n � P 0

0J0;0½JdB/�m;n. ð102Þ
All terms on the right are now known quantities although, once again, much unraveling of analytic convo-

lutions must be done to put dmm,n in its final form.

5.2.11. The change in the poloidal current profile

The free equilibrium profiles for pressure and toroidal current are code inputs, and the poloidal current

profile is then determined by the m = n = 0 mode of Eq. (66):
g0 þ iI 0 þJ0;0P
0 ¼ 0. ð103Þ
The poloidal current profile varies with B as
g00 �
dg0
dw0

! g01 �
dg1
dw1

¼ g00 þ dG. ð104Þ
Writing Eq. (103) in the perturbed system gives
g00 þ dGþ ði0 þ diÞðI 00 þ dIÞ þ ðJ0;0 þ dnÞðP 0
0 þ dPÞ ¼ 0. ð105Þ
In terms of quantities we have already calculated, this reduces to
dGm;n ¼ �i0 dIm;n �J0;0 dPm;n � I 00 dim;n � P 0
0 dnm;n. ð106Þ
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5.2.12. The change in om/oh
The h-derivative of the current density stream function varies with B as
om0
oh0

! om1
oh1

¼ om0
oh0

þ dN; ð107Þ
where we have defined
dN � d
om
oh

� �
¼ om1

oh1
� om0
oh0

. ð108Þ
om1/oh1 can be evaluated in the old coordinates by using a chain rule for the partial derivative and noting
that the following is true to first order:
odh
oh1

¼ odh
oh0

ð109Þ
and similarly for the w-derivative. Therefore,
dN ¼ odm
oh0

� om0
ow0

odw
oh0

� om0
oh0

odh
oh0

; ð110Þ
where dm has already been calculated, and the last two terms are analytic convolutions that can be unrav-

eled as per Section 4.2.1.

5.2.13. Method 1 summary

The final expression for dJm,n(w0), obtained by combining the results from Sections 5.2.1 through 5.2.12,

is far too large to print here: around 10 pages of text [14]. The algebra becomes very complicated for several

reasons: there are interdependencies between the many terms, many convolutions need to be unraveled, the

m = n = 0 coefficients are generally special cases, everything must be expressed in terms of the components

of dA rather than dB, radial factors must be extracted from every Fourier coefficient, and all radial deriv-

atives discretized in the manner of Eqs. (50) and (51). The full derivation was done twice, once using the

symbolic algebra capability of Mathematica [15] as far as possible, and the two versions were checked

exhaustively against each other to verify correctness. To avoid transcription errors we had Mathematica
write out the result directly in Fortran code.

5.3. Derivation of dJ, Method 2

An alternative derivation of the Newton gradient term begins by directly varying the coordinate-

independent equation for the current density that satisfies the force balance equation, Eq. (11),
dJ ¼ ldBþ dB�rP

B2
� 2B � dBB�rP

B4
þ Bdlþ B�rdP

B2
. ð111Þ
The first three terms here are already of the right form, resulting in matrices operating on coefficients of dB,
and they can be straightforwardly discretized in any coordinate system. The two final terms, however, can

only be expressed in terms of dB by solving MDEs for dl and dP, which still requires specializing to mag-

netic coordinates. Nevertheless, this method offers some opportunity to devise a Newton algorithm that is

less dependent on magnetic coordinates (see Section 6.5), as well as an independent check on the very com-
plicated result of Section 5.2.

The magnetic differential equation for dP arises from the flux-function nature of the scalar pressure

(B Æ $P = 0),
B � rdP ¼ �dB � rP ; ð112Þ
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and the MDE for dl is generated by varying Eq. (12),
B � rdl ¼ �dB � rl�rdP � r � B

B2

� �
�rP � r � dB

B2

� �
þ 2rP � � BB � dB

B4

� �
. ð113Þ
Following this method, and using similar techniques to those of the first derivation, the expression for dJ
that emerges is considerably smaller, but the algebra is still extensive and the final result is still far too large

to print here. The two versions of the gradient term have been compared to each other to check for errors in

the derivations, and both are available for use in the PIES Newton algorithm.
6. Results: convergence properties

We compare the performance of the new Picard and Newton vector potential schemes with the

original PIES Picard scheme in this section. Initial Picard iteration tests are described in Section 6.1, then

the results of simple linear Newton tests, which can be done in background coordinates, are given in

Section 6.2. The basic Newton scheme of Section 3 encountered problems due to noise growth in the
magnetic coordinates, prompting us to develop two Newton method variants to recover some of the

benefits of solving Ampere�s Law in fixed background coordinates. These Newton variants are described

in Sections 6.3–6.5, and summarized briefly in Section 6.6. The main Newton code results are presented

in Sections 6.7–6.9. PIES can now operate in its original Picard configuration, or in any of the new

vector potential modes (Picard iteration for A or dA, the basic Newton scheme of Section 3, or the

variant Newton schemes described later in this section).

6.1. Initial Picard iteration tests

The $ · $ · A discretization was first tested independently of PIES using analytically specified coordi-

nate geometry and Mathematica to verify the second-order accuracy of the radial finite-differencing, etc.

This confirmed the quadratic convergence of Fourier modes with respect to radial resolution. Then, with-

in the PIES code, the iterative convergence properties of the new Picard scheme proved to be almost

indistinguishable from those of the original scheme, even for complicated 3D equilibria with magnetic

islands and stochastic regions. This validated our coding of substantial parts of the Newton algorithm:

the $ · $ · dA discretization, gauge choice, radial dependence predictions for dA, and custom sparse
matrix solver.

6.2. Linear cases in background coordinates

When the plasma pressure vanishes the current density is parallel to the magnetic field: J = l(B)B. New-

ton�s method should converge in a single iteration in such linear cases. Further, if I 0(w) is flat then l is con-

stant and the Newton gradient term is vastly simplified,
dJ ¼ oJ

oB
� dB ¼ kdB ¼ kr� dA. ð114Þ
dJ is entirely coordinate-independent here so Ampere�s Law solver, Eq. (21), can run in fixed background

coordinates. The test case of Fig. 3, a linear cylindrical equilibrium, shows that the algorithm can indeed

converge to machine precision in one iteration. At very low resolution, however, convergence is delayed

slightly because the current density is apparently not adequately represented. Picard converges slowly in
this case, albeit without any blending. In general, Newton�s convergence rate exhibits a strong dependence

on resolution, as in the linear toroidal example of Fig. 4, whereas Picard�s is unaffected. The saturation in



Fig. 3. Convergence of the Newton and Picard codes, as measured by the iterative correction, for a linear test case (J = kB, the best

case scenario for Newton). The equilibrium is cylindrical, aspect ratio = 0.5, poloidal elongation 1.5.

Fig. 4. Upper: convergence of Newton and Picard for another linear case (toroidal, aspect ratio 2, poloidal elongation 1.5). Lower:

MHD residuals iJ · B � $Pi for the lowest resolution case.
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convergence at low angular resolution shown in the lower figure can be understood as follows. When the

curl of the old field, on the right side, gets interpolated forward to the new grid at the next iteration, it goes

through a transformation from polar vector components on the old grid through background Cartesian

components to polar components on the new grid. As the field converges, so do the coordinates, but even

when convergence is attained this interpolation is only perfect in the limit of infinite angular resolution

because the metric elements (which are convolutions of unit vectors) have full Fourier series even if the



Fig. 5. Magnetic field and vector potential iterative corrections for the lowest resolution case in Fig. 4.
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coordinate geometry contains only low-order modes. Thus the minimum size of dA is of the order of the

minimum difference between Ji and Ji�1, the angular resolution dependent error accrued by Ji�1 in this

interpolation. In fact, dA converges to this value, while the magnetic field correction continues converging

toward machine precision, as shown in Fig. 5. When the angular resolution is insufficient the final con-

verged equilibrium fields are not exactly the same as those obtained by the Picard code; they are modified
by the remaining non-zero $ · dA (the two solutions are mutually convergent with respect to resolution,

however).

6.3. Magnetic coordinates and general equilibria

For finite plasma pressure and general current profiles we are forced to use the full Newton gradient

term of Section 5 and magnetic coordinates (this is achieved by simply disabling conversion to the back-

ground grid after computing J) in solving in Eq. (21). Unfortunately the basic Newton algorithm per-
formed very poorly in magnetic coordinates for anything other than simple circular cylindrical

equilibria, in which only the m = 0 modes are significant and the magnetic and background grids coin-

cide. Even simple linear toroidal cases, like those of the previous section, failed to converge at all in mag-

netic coordinates. This could not be due to coding errors because the linear Newton gradient term is

quite trivial and its correctness can be absolutely guaranteed. In fact, the Picard algorithm, which con-

verges well in background coordinates in these cases, does not converge in magnetic coordinates either.

While this is a known issue and the reason why Picard-PIES now solves Ampere�s Law in background

coordinates, we had hoped that Newton�s stronger convergence might overcome the problem. A major
deficiency of magnetic coordinates is the difficultly in getting good angular resolution in certain regions,

notably the outer mid-plane, in cases with significant plasma pressure, low aspect ratio, or strong bound-

ary shaping, because of spreading of the lines of constant h (use of equal arc-length magnetic coordinates

might help, but for now the choice of a uniform /-coordinate is deeply entrenched within PIES). In addi-

tion, when the entire code runs in magnetic coordinates, the unbroken coupling between the magnetic

field and the coordinates leads to numerical noise growth. Solving Ampere�s Law is an integrating oper-

ation that tends to smooth noise in the solution vector, but any remaining noise ends up in the coordi-

nates at the next iteration, and any noise in the coordinates is not smoothed by integration but is
transferred on to the next iteration through the grid interpolation process. The noise problem tends to

arise near the origin because the radial finite differencing of high-order Fourier coefficients is less accurate
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there. After several iterations in magnetic coordinates the noise swamps convergence and begins to cause

trouble for the axis-finding routines. Newton�s method in fact has even greater potential for noise growth

because the smoothing integration operates only on dA rather than the full field.

6.4. The two-pass Newton algorithm

A modified Newton algorithm allows us to recover some of the benefits of using a fixed background

coordinate system, by solving Ampere�s Law twice in each iteration. The first pass through the Ampere�s
Law solver is unchanged, in magnetic coordinates, but the solution vector dA is only used to compute

the Newton gradient term. dJ is then transferred to the right side of the system as a known quantity

and we re-solve for the full vector potential in background coordinates. This effectively allows the

noise-smoothing integration to operate on the full field in each iteration,
ðmagnetic coordinatesÞ
JiðBi�1Þ (JiðBi�1Þ � Bi�1 ¼ rP i;r � JiðBi�1Þ ¼ 0; ð115Þ

pass 1 ðmagnetic coordinatesÞ
dJi ¼ Li � dAi (r�r� dAi �Li � dAi ¼ Ji � ðJi�1 þ dJi�1Þ; ð116Þ

pass 2 ðbackground coordinatesÞ
Bi ¼ r� Ai (r�r� Ai ¼ Ji þ dJi. ð117Þ
Either form of dJ, from Section 5.2 or 5.3, can be used. While this scheme is more difficult to implement

than the original single-pass version it does not lead to a large drop in efficiency because the main compu-

tational bottleneck is still in the field-line mapping code at the front end of the current density solver.

Note that Ji�1 + dJi�1 on the right of Eq. (116) is just the curl of the old magnetic field. We use it in this

form, rather than $ · Bi�1 or $ · $ · Ai�1, because the other choices involve differentiation of the new field

after it has been interpolated forward to the new coordinate grid, which results in detrimental numerical
noise growth (this applies to Newton�s method and the dB form of the Picard scheme). One could poten-

tially take the derivatives before transforming to the new grid but that is incompatible with our particular

offset radial grid discretization and, in addition, our curl curl operator would not be valid on the new grid

because the vector potential would acquire a radial component in the coordinate transformation. The extra

(radial) component of the Newton gradient is needed in order to put dJi�1 in the new coordinates but it is at

least much simpler to derive than the other two components.

It should also be noted that the curl of the old magnetic field must be interpolated forward from the

first (magnetic coordinate) pass of Ampere�s solver at the previous iteration, not taken from the back-
ground pass. Otherwise the algorithm cannot converge because of the small resolution-dependent error

incurred in transforming between the background and magnetic grids (whereas the two magnetic grids

mutually converge as the field converges). One further modification allows the two-pass Newton algo-

rithm to converge to exactly the same result as the Picard algorithm: instead of taking Ji directly from

the magnetic to the background grid for pass 2 we calculate the parallel component of the current density

l (Eq. (11)) and then transform it and B to the background grid. J can then be reconstructed on the

background grid from l and B. PIES uses J in this form to facilitate the inclusion of magnetic island

physics, and it also yields a smaller MHD residual because the original perpendicular current density can-
cels from the residual vector product.

The validity of our analytically specified Newton gradient term depends on having good magnetic

coordinates, whose accuracy in turn depends on factors such as the field line following distance and tol-

erance, proximity to resonant surfaces, and the precision of the fast Fourier transforms that yield the

Fourier coefficients on each surface. In simple two-dimensional cases there is a clear correlation between



Fig. 6. Newton�s method convergence for values of the PIES field-line following parameter ftfol (5.0 · 10�5 in case A, and

5.0 · 10�12 in case B). The distance followed is proportional to the logarithm of the inverse of ftfol. The case shown is a circular

cross-section cylindrical equilibrium with a non-flat current profile.
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the field line following distance (determined by a parameter ftfol in the code) and the maximum level

to which the Newton method converges, as illustrated in Fig. 6. This effect is likely to be even more

important with more complex field geometry, but it tends to be obscured by other factors that reduce

the level of convergence.

6.5. The two-pass Newton algorithm, Version 2

The second derivation of the Newton gradient, Section 5.3, also allows a two-pass Newton variant with

minimal use of magnetic coordinates. Rather than computing the full Newton gradient from the first pass,

we can use the solution vector to compute just dP and dl from the two terms in dJ that depend explicitly on

the magnetic coordinates. These can then be transferred to the right side as known quantities, leaving the

other terms on the left, before solving the system again on the background grid. The positive effect of min-

imal magnetic coordinate use, however, appears to be countered by the less effective iterative noise reduc-

tion when solving for dA instead of A, and consequently both of the two-pass algorithms perform similarly.
The second derivation of dJ also suggests a modified Picard, or partial Newton scheme: if just the coordi-

nate-independent parts of dJ were used as extra linear terms in the Picard Ampere�s Law equation, they

might help speed convergence in some cases. This has not been extensively tested, however. As coded into

PIES, the second two-pass Newton algorithm can be written,
ðmagnetic coordinatesÞ
JiðBi�1Þ (JiðBi�1Þ � Bi�1 ¼ rP i;r � JiðBi�1Þ ¼ 0; ð118Þ

pass 1 ðmagnetic coordinatesÞ
dli; dP i ( dAi (r�r� dAi �Li � dAi ¼ Ji �r� Bi�1; ð119Þ

pass 2 ðbackground coordinatesÞ

Bi ¼ Bi�1 þr� dAi (r�r� dAi � lir� dAi �
r� dAi �rP i

B2
i�1

þ 2Bi�1 � r � dAi
Bi�1 �rP i

B4
i�1

¼ Ji þ Bi�1dli þ
Bi�1 �rdP i

B2
i�1

�r� Bi�1. ð120Þ
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Here, the curl of the old magnetic field is given by
Fig
r� Bi�1 ¼ Ji�1 þ li�1r� dAi�1 þ
r� dAi�1 �rP i�1

B2
i�2

� 2Bi�2 � r � dAi�1

Bi�2 �rP i�1

B4
i�2

þ Bi�1dli�1

þ Bi�2 �rdP i�1

B2
i�2

.

6.6. Relative performance of the three Newton variants

To summarize, the original pure magnetic coordinate formulation of Newton�s method performed

poorly for reasons described in detail in Section 6.3. This motivated the development of the first two-pass

Newton algorithm (Section 6.4) which is designed to control magnetic noise growth by solving Ampere�s
Law twice in each iteration. First we solve for the field increment in magnetic coordinates and use it only

to compute the Newton gradient term. The gradient term is then transferred to the right hand side as a

known quantity and we re-solve the system for the full field in background coordinates. This dramatically

improves the performance of the Newton code, as can be seen from the results to follow. The second
two-pass variant (Section 6.5) was tried because it further minimizes the use of magnetic coordinates

by taking from the first pass only those sub-terms of the Newton gradient that depend inextricably on

the magnetic coordinates. In the second pass, however, we can no longer solve for the full field; this

has a competing detrimental effect and the method consequently shows no significant improvement over

the first two-pass algorithm. The remaining results presented in the paper were therefore generated with

the first two-pass method.

6.7. Zero-beta tokamak equilibria

For two-dimensional cases with no plasma pressure, Newton�s method works very well in comparison to

Picard iteration. For example, Fig. 7 compares Newton and Picard for a zero-b D III-D tokamak equilib-

rium (b is the volume averaged ratio of plasma pressure and squared field strength). The slow start by New-

ton suggests that the initial guess was not sufficiently good. We note here that the processor time per

iteration is only fractionally larger for the Newton code, in general, because the Ampere�s Law solver in

PIES, whether Picard or Newton, is relatively fast in comparison to the field-line mapping code at the start

of each iteration.
. 7. Convergence of the Picard and Newton methods for a b = 0 D III-D tokamak equilibrium. Resolution k = 30, m = 30.
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6.8. Finite plasma pressure

Finite plasma pressure makes the equilibrium equations increasingly nonlinear, and it becomes difficult

to get good angular resolution at the outer midplane because of distortion in the magnetic coordinates. In

toroidal geometry the magnetic axis is also pushed outward, which exacerbates this problem. Pressure-
dependent parts of the Newton gradient term, however, can be comprehensively tested on non-toroidal

cases because they are only weakly dependent on geometry through the Jacobian (in contrast, the curl curl

operator is strongly dependent on the geometry, but was easily tested by comparing the two Picard

schemes). In fact, b can easily be driven so high in non-toroidal cases that pressure-dependent terms totally

dominate. Results for a cylindrical case of ellipticity 1.665 at resolution k = 20, m = 10 are shown in Figs. 8

and 9. The Newton code�s performance deteriorates with increasing pressure, and it ceases to be quadrat-

ically convergent, but it is always faster and more stable than raw Picard iteration, which eventually fails at

b = 460%. Lowering the resolution from that in Figs. 8 and 9 adversely affects the rate of convergence,
while moderately higher resolution improves it, but not a lot. This is possibly an indication that the increas-

ing nonlinearity at high b shrinks the radius of quadratic convergence to such an extent that we do not

reach it before numerical noise begins to cause problems.

6.9. Simple 3D stellarator equilibria

Stellarators get rotational transform from external coils rather than net toroidal current, and they con-

sequently have vacuum field solutions. The Picard algorithm solves for stellarator vacuum fields in a single
Fig. 8. Comparison of Newton (top) and Picard (bottom) in the elliptical cylindrical case at various high plasma pressures: volume

average b = 0 (A), 85% (B), 276% (C), 398% (D), and 460% (E). Picard fails at iteration 7 of case E.



Fig. 9. Newton and Picard compared on the same scale for the two extreme cases (top: b = 0, and bottom: b = 460%) from Fig. 8. The

Picard code fails at iteration 7 in the high pressure case.
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iteration, but sometimes increasing plasma pressure causes a rapid transition to equilibria that require a lot
of blending to get convergence. The Newton method may be useful in these cases. Application of our code

to 3D equilibria, however, currently requires that we avoid low-order resonant surfaces where islands

chains open up, because the gradient term assumes good magnetic surfaces throughout the plasma (extend-

ing the Newton code to deal with magnetic islands should be possible; see Section 7). Low-order resonances

can be avoided by adjusting the profiles, but this limits resolution because there are always islands and sto-

chastic regions in 3D equilibria if one looks on a sufficiently fine scale [16]. Coordinate surfaces in close

proximity to rational surfaces (where i(q) = m/n) might also cause problems because the Newton gradient

term contains many resonant denominators. We have therefore used a resonance broadening technique to
modify the denominators,
1

n� iðqÞm ! n� iðqÞm
ðn� iðqÞmÞ2 þ �2

; ð121Þ
where � is a small parameter that can be chosen to smooth the resonance over a few radial grid points.

Away from the immediate vicinity of the resonance this accurately represents the original function.

The extinct Wendelstein VII-A stellarator, a relatively uncomplicated five-period device with a large

aspect ratio of 20, provides a convenient 3D test for Newton�s method. The outer flux surface geometry

is specified by



Fig. 10

Fig. 11

angula
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x ¼ 1

2
ð1� eÞ cosð2N/� hÞ þ ð1þ eÞ cosðhÞ½ �; ð122Þ

y ¼ 1

2
ð1� eÞ sinð2N/� hÞ þ ð1þ eÞ sinðhÞ½ �; ð123Þ
where e > 1 is the elliptical elongation. This corresponds to an elliptical poloidal cross-section that rotates

in / while the lines of constant h do not rotate about the axis. We were restricted to very low resolution in

order to avoid low-order rational surfaces (above). Low resolution was detrimental in 2D cases, but New-

ton�s method nevertheless showed some promise here. Fig. 10 compares convergence of Newton and Picard

for a volume-averaged b of 10%, for a straightened version of the stellarator with cross-sectional ellipticity

of 1.6 to give the characteristic rotational transform of about 0.55 on axis. Newton�s method provides a

factor of two improvement over Picard, in terms of number of iterations, before it saturates due to the very

low resolution and insufficient field-line following. Similar convergence results for the five-period toroidal
case is shown in Fig. 11 (b = 1%) and Fig. 12 (b = 2%). The poloidal cross-section has an ellipticity of 1.665,

giving an on-axis rotational transform of about 0.55, with low shear. The b = 2% case has a 26% magnetic

axis shift. It is very much under-resolved at k = 20, m = 5, n = 4 (dA saturates after a few iterations for the

reasons given in Section 6.2), but the Newton method still performs better than Picard iteration. Finally,

Fig. 13 shows a zero b case with finite net current and lower ellipticity to keep the rotational transform
. Convergence results for the straightened W VII-A five period stellarator case, b = 10%. Resolution is low: m = 5, n = 4, k = 20.

. Convergence to a Wendelstein VII-A equilibrium at b = 1%. Resolution is low k = 20, m = 5, n = 4 (with a factor of two

r padding for dealiasing).



Fig. 13. Convergence to a zero b Wendelstein VII-A equilibrium, with finite net current. Resolution is low k = 20, m = 5, n = 4 (with a

factor of two angular padding for dealiasing).

Fig. 12. Convergence to a Wendelstein VII-A equilibrium at b = 2%. Resolution is low k = 20, m = 5, n = 4 (with a factor of 2 angular

padding for dealiasing).
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at a reasonable level. The two algorithms converge with the same MHD residuals and, by inspection of the

magnetic field, to the same solution. The mutual quadratic convergence of the two solutions with respect to

radial resolution has been confirmed for various modes.
7. Conclusions

We have implemented a (J, B) space Newton method for the 3D MHD equilibrium equations, in toroi-

dal geometry, as an extension to the hybrid spectral/finite-difference Princeton Iterative Equilibrium Solver

(PIES). Computing the Newton gradient term (functional derivative) numerically in a hybrid spectral code

is not feasible but we avoid this problem through an analytic derivation, in magnetic coordinates, of the

way in which the plasma�s pressure-driven Pfirsch–Schlüter currents vary with the field. Deriving the gra-

dient term in two different ways was a huge task; the final expressions are too large to print here, but they

have been extensively validated with algebraic help from Mathematica, and by using test cases (cylindrical

geometry, zero pressure, etc.) that isolate specific terms in the equations. Ampere�s Law is formulated in
terms of a vector potential in the Aq = 0 gauge, and discretized on offset radial grids with near origin

leading-order radial behavior factored from Fourier coefficients to improve finite difference accuracy.
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The resulting sparse linear system is internally block tridiagonal but globally sub-diagonal because of the

way in which the vector potential�s unusual radial dependence affects the boundary equations. A custom

sparse matrix solver was built to solve the system.

In Picard iteration mode and fixed background coordinates the new vector potential algorithm behaves

identically to the original PIES code. In the basic Newton mode, it fails to converge because of numerical
noise in the magnetic coordinates required by our analytic gradient term (similarly, raw Picard iteration

also fails in magnetic coordinates), but a modified ‘‘two-pass’’ Newton scheme recovers some of the benefits

of using a fixed background grid, with dramatically improved performance. With sufficient resolution, lin-

ear cases converge in a single iteration. More general zero-b equilibria converge in many fewer iterations

than Picard. In non-toroidal cases with extremely high plasma pressure the Newton method is a lot faster

and more robust than Picard iteration, although its convergence is adversely affected by low resolution and

imperfections in the magnetic coordinates. Several finite b 3D toroidal cases were run with parameters typ-

ical of the Wendelstein VII-A stellarator. In spite of the extremely low resolution imposed to avoid islands
and stochastic regions, Newton converged in approximately half the number of iterations as Picard at

b = 1%, and was still significantly faster at b = 2%. The sensitivity to initial guess typically displayed by

Newton�s method has not been problematic so far, but we can start the code with one or more Picard iter-

ations if necessary.

The Newton code�s performance is tantalizingly good in simple magnetic geometry. Its sensitivity to res-

olution and coordinate noise is of concern in more complicated cases, but it has the potential to be useful

for computing those 3D equilibria that require massive blending to achieve convergence by Picard iteration.

The Newton code must first be extended, in future work, to handle magnetic islands and stochastic regions.
Magnetic coordinates can become quite distorted near islands but nevertheless this should not prove too

difficult because the Newton gradient term is trivial in stochastic regions (where the equilibrium profiles

are flat) and one could use the methods of Section 5 to predict the way in which an island�s extent varies
with the magnetic field.
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